Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings

Ying Liu

Received: 2 December 2008 / Accepted: 23 April 2009 / Published online: 9 May 2009
© Springer Science+Business Media, LLC. 2009

Abstract

In this paper, we introduce an iterative sequence for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a variational inequality in a Banach space. Our results extend and improve the recent ones announced by Li (J Math Anal Appl 295:115-126, 2004), Jianghua (J Math Anal Appl 337:1041-1047, 2008), and many others.

Keywords Variational inequalities • Relatively weak nonexpansive mappings • Generalized projection • Cauchy sequences • Continuity

Mathematics Subject Classification (2000) 47H09 • 47H05 • 47J25 - 47J05

1 Introduction

Let B be a Banach space, B^{*} be the dual space of $B .\langle\cdot, \cdot\rangle$ denotes the duality pairing of B^{*} and B. Let K be a nonempty closed convex subset of B and $T: K \rightarrow B^{*}$ be an operator. We consider the following variational inequality:

$$
\begin{equation*}
\text { Find } x \in K \text {, such that }\langle T x, y-x\rangle \geq 0, \quad \text { for all } y \in K . \tag{1.1}
\end{equation*}
$$

A point $x_{0} \in K$ is called a solution of the variational inequality (1.1) if for every $y \in$ $K,\left\langle T x_{0}, y-x_{0}\right\rangle \geq 0$. The set of solutions of the variational inequality (1.1) is denoted by $V I(K, T)$. The variational inequality (1.1) has been intensively considered due to its various applications in operations research, economic equilibrium and engineering design. When T has some monotonicity, many iterative methods for solving the variational inequality (1.1) have been developed, e.g., see [1-7].
Y. Liu (\boxtimes)

College of Mathematics and Computer, Hebei University, 071002 Baoding, People's Republic of China e-mail: ly_cyh2007@yahoo.com.cn

Most recently, applying the generalized projection operator in uniformly convex and uniformly smooth Banach spaces, $\mathrm{Li}[8]$ established the following convergence theorem of Mann type iterative scheme for variational inequalities without assuming the monotonicity of T in compact subsets of Banach spaces:

Theorem K1 (Li [8], Theorem 3.1) Let B be a uniformly convex and uniformly smooth Banach space and let K be a compact convex subset of B. Let $T: K \rightarrow B^{*}$ be a continuous mapping on K such that

$$
\left\langle T x-\xi, J^{*}(J x-(T x-\xi))\right\rangle \geq 0, \text { for all } x \in K
$$

where $\xi \in B^{*}$. For any $x_{0} \in K$, define a Mann type iteration scheme as follows:

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \pi_{K}\left(J x_{n}-\left(T x_{n}-\xi\right)\right), \quad n=1,2,3, \ldots,
$$

where $\left\{\alpha_{n}\right\}$ satisfies conditions

$$
\text { (a) } 0 \leq \alpha_{n} \leq 1, \quad \text { for all } n \in N \text {; (b) } \sum_{n=1}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=\infty \text {. }
$$

Then the variational inequality $\langle T x-\xi, y-x\rangle \geq 0, \forall y \in K$, [when $\xi=0$, this is the variational inequality (1.1)] has a solution $x^{*} \in K$ and there exists a subsequence $\left\{n_{i}\right\} \subset\{n\}$ such that

$$
x_{n_{i}} \rightarrow x^{*}, \quad \text { as } i \rightarrow \infty
$$

In addition, Fan [9] established some existence results of solutions and the convergence of a Mann type iterative scheme for the variational inequality (1.1) in noncompact subsets of Banach spaces. He proved the following theorem:

Theorem K2 (Fan [9], Theorem 3.3) Let B be a uniformly convex and uniformly smooth Banach space and let K be a closed convex subset of B. Suppose that there exists a positive number β, such that

$$
\left\langle T x, J^{*}(J x-\beta T x)\right\rangle \geq 0, \quad \text { for all } x \in K
$$

and $J-\beta T: K \rightarrow B^{*}$ is compact. If

$$
\langle T x, y\rangle \leq 0, \quad \text { for all } x \in K, y \in V I(K, T),
$$

then the variational inequality (1.1) has a solution $x^{*} \in K$ and the sequence $\left\{x_{n}\right\}$ defined by the following iteration scheme:

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \pi_{K}\left(J x_{n}-\beta T x_{n}\right), \quad n=1,2,3, \ldots,
$$

where $\left\{\alpha_{n}\right\}$ satisfies: $0<a \leq \alpha_{n} \leq b<1$ for alln $\in N$, for some positive numbers $a, b \in(0,1)$ satisfying $a<b$, converges strongly to $x^{*} \in K$.

On the other hand, Kohasaka and Takahashi [10] introduced the definition of the relatively weak nonexpansive mapping. They proved that $J_{r}=(J+r A)^{-1} J$, for $r>0$ is relatively weak nonexpansive, where $A \subset B \times B^{*}$ is a continuous monotone mapping with $A^{-1} 0 \neq \emptyset$ and B is a smooth, strictly convex and reflexive Banach space.

Motivated by these facts, our purpose in this paper is to establish an iteration sequence for approximating a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of the variational inequality (1.1) in noncompact subsets of Banach spaces without assuming the compactness of the operator $J-\beta T$.

2 Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers, respectively.

Let X, Y be Banach spaces, $T: D(T) \subset X \rightarrow Y$, the operator T is said to be compact if it is continuous and maps the bounded subsets of $D(T)$ onto the relatively compact subsets of Y.

We denote by $J: B \rightarrow 2^{B^{*}}$ the normalized duality mapping from B to $2^{B^{*}}$, defined by

$$
J(x):=\left\{v \in B^{*}:\langle v, x\rangle=\|v\|^{2}=\|x\|^{2}\right\}, \quad \forall x \in B .
$$

The duality mapping J has the following properties:
(i) if B is smooth, then J is single-valued;
(ii) if B is strictly convex, then J is one-to-one;
(iii) if B is reflexive, then J is surjective.
(iv) if B is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of B.

Let B be a reflexive, strictly convex, smooth Banach space and J the duality mapping from B into B^{*}. Then J^{*} is also single-valued, one-to-one, surjective, and it is the duality mapping from B^{*} into B, i.e. $J^{*} J=I$.

When $\left\{x_{n}\right\}$ is a sequence in B, we denote strong convergence of $\left\{x_{n}\right\}$ to $x \in B$ by $x_{n} \rightarrow x$.
Let $U=\{x \in B:\|x\|=1\}$. A Banach space B is said to be strictly convex if $\left\|\frac{x+y}{2}\right\|<1$ for all $x, y \in U$ and $x \neq y$. It is also said to be uniformly convex if $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ for any two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in U and $\lim _{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{2}\right\|=1$. A Banach space B is said to be smooth provided $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for each $x, y \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$.

In [2,4], Alber introduced the functional $V: B^{*} \times B \rightarrow R$ defined by

$$
V(\phi, x)=\|\phi\|^{2}-2\langle\phi, x\rangle+\|x\|^{2},
$$

where $\phi \in B^{*}$ and $x \in B$.
It is easy to see that

$$
\begin{equation*}
V(\phi, x) \geq(\|\phi\|-\|x\|)^{2} . \tag{2.1}
\end{equation*}
$$

Thus the functional $V: B^{*} \times B \rightarrow R^{+}$is nonnegative.
Definition 2.1 (See [9]) If B is a uniformly convex and uniformly smooth Banach space, the generalized projection $\pi_{K}: B^{*} \rightarrow K$ is a mapping that assigns an arbitrary point $\phi \in B^{*}$ to the minimum point of the functional $V(\phi, x)$, i.e., a solution to the minimization problem

$$
V\left(\phi, \pi_{K}(\phi)\right)=\inf _{y \in K} V(\phi, y)
$$

Li [11] proved that the generalized projection operator $\pi_{K}: B^{*} \rightarrow K$ is continuous, if B is a reflexive, strictly convex and smooth Banach space.

The functional $\phi: B \times B \rightarrow R$ is defined by

$$
\phi(x, y)=V(J y, x), \quad \forall x, y \in B .
$$

The following properties of the operators π_{K}, V are useful for our paper. (See, for example, [1,11])
(i) $V: B^{*} \times B \rightarrow R$ is continuous.
(ii) $V(\phi, x)=0$ if and only if $\phi=J x$.
(iii) $V\left(J \pi_{K} \phi, x\right) \leq V(\phi, x)$ for all $\phi \in B^{*}$ and $x \in B$.
(iv) The operator π_{K} is J fixed at each point $x \in K$, i.e., $\pi_{K}(J x)=x$.
(v) If B is smooth, then for any given $\phi \in B^{*}, x \in K, x \in \pi_{K} \phi$ if and only if $\langle\phi-J x, x-y\rangle \geq 0$, for all $y \in K$.
(vi) The operator $\pi_{K}: B^{*} \rightarrow K$ is single valued if and only if B is strictly convex.
(vii) If B is smooth, then for any given point $\phi \in B^{*}, x \in \pi_{K} \phi$, the following inequality holds

$$
V(J x, y) \leq V(\phi, y)-V(\phi, x) \quad \forall y \in K .
$$

(viii) $V(\phi, x)$ is convex with respect to ϕ when x is fixed and with respect to x when ϕ is fixed.
(ix) If B is reflexive, then for any point $\phi \in B^{*}, \pi_{K}(\phi)$ is a nonempty, closed, convex and bounded subset of K.

Remark 2.1 It is easy to see that if B is a strictly convex and smooth Banach space, then for $x, y \in B, \phi(x, y)=0$, i.e. $V(J y, x)=0$ if and only if $x=y$. It is sufficient to show that if $V(J y, x)=0$ then $x=y$. From property (ii) of the operator V, we have $J x=J y$. Since J is one-to-one, we have $x=y$.

Using the properties of generalized projection operator π_{K}, Alber proved the following theorem in [1].

Theorem 2.1 Let B be a reflexive, strictly convex and smooth Banach space with dual space B^{*}. Let T be an arbitrary operator from Banach space B to B^{*}, α an arbitrary fixed positive number. Then the point $x \in K \subset B$ is a solution of variational inequality (1.1) if and only if x is a solution of the operator equation in B

$$
x=\pi_{K}(J x-\alpha T x) .
$$

Let S be a mapping from K into itself. We denote by $F(S)$ the set of fixed points of S. A point p in K is said to be an asymptotic fixed point of S [12] if K contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0$. The set of asymptotic fixed point of S will be denoted by $\hat{F}(S)$. A mapping S from K into itself is called relatively nonxpansive (see e.g., [12]) if $\hat{F}(S)=F(S)$ and $\phi(p, S x) \leq \phi(p, x)$ for all $x \in K$ and $p \in F(S)$. The asymptotic behavior of relatively nonexpansive mappings were studied in [12,13]. A point p in K is said to be a strong asymptotic fixed point of S if K contains a sequence $\left\{x_{n}\right\}$ which converges strongly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0$. The set of strong asymptotic fixed points of S will be denoted by $\tilde{F}(S)$. A mapping S from K into itself is called relatively weak nonexpansive if $\tilde{F}(S)=F(S)$ and $\phi(p, S x) \leq \phi(p, x)$ for all $x \in K$ and $p \in F(S)$. If B is a smooth strictly convex and reflexive Banach space, and $A \subset B \times B^{*}$ is a continuous monotone mapping with $A^{-1} 0 \neq \emptyset$, then it is proved in [10] that $J_{r}=(J+r A)^{-1} J$, for $r>0$ is relatively weak nonexpansive. Moreover, if $S: K \rightarrow K$ is relatively weak nonexpansive, then using the definition of ϕ (i.e. the same argument as in the proof of [14, p.260]) one can show that $F(S)$ is closed and convex.

It is obvious that relatively nonexpansive mapping is relatively weak nonexpansive mapping. In fact, for any mapping $S: K \rightarrow K$ we have $F(S) \subset \tilde{F}(S) \subset \hat{F}(S)$. Therefore, if S is a relatively nonexpansive mapping, then $F(S)=\tilde{F}(S)=\hat{F}(S)$.

The following lemmas are useful for the proof of our main theorem.

Lemma 2.2 (See [14]) Let B be a uniformly convex and smooth Banach space and let $\left\{y_{n}\right\},\left\{z_{n}\right\}$ be two sequences of B. If $\phi\left(y_{n}, z_{n}\right) \rightarrow 0$, and either $\left\{y_{n}\right\}$, or $\left\{z_{n}\right\}$ is bounded, then $y_{n}-z_{n} \rightarrow 0$.

Lemma 2.3 (See [15]) Let B be a uniformly convex Banach space and let $r>0$. Then there exists a continuous strictly increasing convex function $g:[0,2 r] \rightarrow R$ such that $g(0)=0$ and

$$
\|t x+(1-t) y\|^{2} \leq t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t) g(\|x-y\|),
$$

for all $x, y \in B_{r}$ and $t \in[0,1]$, where $B_{r}=\{z \in B:\|z\| \leq r\}$.
Lemma 2.4 (See [5]) Let B be a uniformly convex and uniformly smooth Banach space. We have

$$
\|\phi+\Phi\|^{2} \leq\|\phi\|^{2}+2\left\langle\Phi, J^{*}(\phi+\Phi)\right\rangle, \quad \forall \phi, \Phi \in B^{*} .
$$

Lemma 2.5 Let B be a uniformly convex and uniformly smooth Banach space, let K be a nonempty, closed convex subset of B. Suppose that there exists a positive number β such that

$$
\begin{equation*}
\left\langle T x, J^{*}(J x-\beta T x)\right\rangle \geq 0, \quad \text { for all } x \in K \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle T x, y\rangle \leq 0, \quad \forall x \in K, y \in V I(K, T) \tag{2.3}
\end{equation*}
$$

Then $\operatorname{VI}(K, T)$ is closed and convex.
Proof We first show that $V I(K, T)$ is closed. Let $\left\{x_{n}\right\}$ be a sequence of $V I(K, T)$ such that $x_{n} \rightarrow \hat{x} \in K$. From the definition of ϕ, the property of V, lemma 2.4 and conditions (2.2) (2.3), we have

$$
\begin{aligned}
\phi\left(x_{n}, \pi_{K}(J \hat{x}-\beta T \hat{x})\right)= & V\left(J \pi_{K}(J \hat{x}-\beta T \hat{x}), x_{n}\right) \\
\leq & V\left(J \hat{x}-\beta T \hat{x}, x_{n}\right) \\
= & \|J \hat{x}-\beta T \hat{x}\|^{2}-2\left\langle J \hat{x}-\beta T \hat{x}, x_{n}\right\rangle+\left\|x_{n}\right\|^{2} \\
\leq & \|J \hat{x}\|^{2}-2 \beta\left\langle T \hat{x}, J^{*}(J \hat{x}-\beta T \hat{x})\right\rangle-2\left\langle J \hat{x}, x_{n}\right\rangle \\
& +2 \beta\left\langle T \hat{x}, x_{n}\right\rangle+\left\|x_{n}\right\|^{2} \\
\leq & \|J \hat{x}\|^{2}-2\left\langle J \hat{x}, x_{n}\right\rangle+\left\|x_{n}\right\|^{2} \\
= & \phi\left(x_{n}, \hat{x}\right),
\end{aligned}
$$

for each $n \in N$. This implies,

$$
\begin{aligned}
0 \leq \phi\left(\hat{x}, \pi_{K}(J \hat{x}-\beta T \hat{x})\right) & =\lim _{n \rightarrow \infty} \phi\left(x_{n}, \pi_{K}(J \hat{x}-\beta T \hat{x})\right) \\
& \leq \lim _{n \rightarrow \infty} \phi\left(x_{n}, \hat{x}\right)=\phi(\hat{x}, \hat{x})=0 .
\end{aligned}
$$

Therefore, we obtain $\hat{x}=\pi_{K}(J \hat{x}-\beta T \hat{x})$. So,we have $\hat{x} \in V I(K, T)$. Next, we show that $V I(K, T)$ is convex. For $x, y \in V I(K, T)$, and $t \in(0,1)$, put $z=t x+(1-t) y$. It is sufficient to show $z=\pi_{K}(J z-\beta T z)$. In fact, we have

$$
\begin{align*}
0 & \leq \phi\left(z, \pi_{K}(J z-\beta T z)\right)=V\left(J \pi_{K}(J z-\beta T z), z\right) \\
& \leq V(J z-\beta T z, z)=\|J z-\beta T z\|^{2}-2\langle J z-\beta T z, z\rangle+\|z\|^{2} \\
& \leq\|J z\|^{2}-2 \beta\left\langle T z, J^{*}(J z-\beta T z)\right\rangle-2\langle J z, z\rangle+2 \beta\langle T z, z\rangle+\|z\|^{2} \tag{2.4}\\
& =-2 \beta\left\langle T z, J^{*}(J z-\beta T z)\right\rangle+2 \beta\langle T z, z\rangle .
\end{align*}
$$

By (2.4), (2.2) and (2.3), we have

$$
\begin{aligned}
0 & \leq \phi\left(z, \pi_{K}(J z-\beta T z)\right) \leq-2 \beta\left\langle T z, J^{*}(J z-\beta T z)\right\rangle+2 \beta\langle T z, z\rangle \\
& \leq 2 \beta\langle T z, z\rangle=2 \beta\langle T z, t x+(1-t) y\rangle=2 \beta t\langle T z, x\rangle+2 \beta(1-t)\langle T z, y\rangle \leq 0 .
\end{aligned}
$$

This implies $z=\pi_{K}(J z-\beta T z)$. Therefore, $V I(K, T)$ is closed and convex.
Lemma 2.6 If B is a reflexive, strictly convex and smooth Banach space, then $\pi_{B}=J^{*}$.
Proof For every $\phi \in B^{*}$, by definition of V and (2.1), we have

$$
0 \leq V\left(\phi, J^{*} \phi\right)=\|\phi\|^{2}-2\left\langle\phi, J^{*} \phi\right\rangle+\left\|J^{*} \phi\right\|^{2}=0 .
$$

By definition of the operator π_{B}, we have $J^{*} \phi \in \pi_{B} \phi$. Since π_{B} is single-valued, we have $\pi_{B} \phi=J^{*} \phi$.

3 Main results

For any $x_{0} \in K$, we define the iteration process $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
x_{0} \in K \text { chosen arbitrarily, } \tag{3.1}\\
z_{n}=\pi_{K}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right), \\
y_{n}=J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J \pi_{K}\left(J z_{n}-\beta T z_{n}\right)\right), \\
C_{0}=\left\{u \in K: \phi\left(u, y_{0}\right) \leq \phi\left(u, x_{0}\right)\right\}, \\
C_{n}=\left\{u \in C_{n-1} \bigcap Q_{n-1}: \phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)\right\}, \\
Q_{0}=K, \\
Q_{n}=\left\{u \in Q_{n-1} \bigcap C_{n-1}:\left\langle J x_{0}-J x_{n}, x_{n}-u\right\rangle \geq 0\right\}, \\
x_{n+1}=\pi_{C_{n} \cap Q_{n}} J x_{0},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
0 \leq \alpha_{n}<1, \text { and } \limsup _{n \rightarrow \infty} \alpha_{n}<1 ; 0<\beta_{n}<1 \text { and } \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0 .
$$

Theorem 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a nonempty, closed convex subset of B. Assume that T is an operator of K into B^{*} that satisfy conditions (2.2) and (2.3) and $S: K \rightarrow K$ is a relatively weak nonexpansive mapping with $V I(K, T) \bigcap F(S) \neq \emptyset$. If $T: K \rightarrow B^{*}$ is continuous, then the sequence $\left\{x_{n}\right\}$ defined by (3.1) converges strongly to $\pi_{V I(K, T)} \cap F(S) J x_{0}$.

Proof We first show that C_{n} and Q_{n} are closed and convex for each $n \in N \bigcup\{0\}$. By the definition of C_{n} and Q_{n}, it is obvious that C_{n} is closed and Q_{n} is closed and convex for each $n \in N \bigcup\{0\}$. We show that C_{n} is convex. Since $\phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)$ is equivalent to

$$
2\left\langle J x_{n}-J y_{n}, u\right\rangle+\left\|y_{n}\right\|^{2}-\left\|x_{n}\right\|^{2} \leq 0,
$$

it follows that C_{n} is convex. Next, we show that $\operatorname{VI}(K, T) \bigcap F(S) \subset C_{n} \bigcap Q_{n}$ for all $n \in N \bigcup\{0\}$. Let $p \in V I(K, T) \bigcap F(S)$, then, from the definitions of ϕ and V, property (iii) of V, lemma 2.4, conditions (2.2) and (2.3), we have

$$
\begin{align*}
\phi\left(p, \pi_{K}\left(J z_{n}-\beta T z_{n}\right)\right)= & V\left(J \pi_{K}\left(J z_{n}-\beta T z_{n}\right), p\right) \leq V\left(J z_{n}-\beta T z_{n}, p\right) \\
= & \left\|J z_{n}-\beta T z_{n}\right\|^{2}-2\left\langle J z_{n}-\beta T z_{n}, p\right\rangle+\|p\|^{2} \tag{3.2}\\
\leq & \left\|J z_{n}\right\|^{2}-2 \beta\left\langle T z_{n}, J^{*}\left(J z_{n}-\beta T z_{n}\right)\right\rangle \\
& -2\left\langle J z_{n}-\beta T z_{n}, p\right\rangle+\|p\|^{2} \\
\leq & \left\|J z_{n}\right\|^{2}-2\left\langle J z_{n}, p\right\rangle+\|p\|^{2}=\phi\left(p, z_{n}\right),
\end{align*}
$$

for each $n \in N \bigcup\{0\}$. Therefore, by properties (viii) and (iii) of the operator V, (3.2), the definition of S, we obtain

$$
\begin{align*}
\phi\left(p, y_{0}\right) & =V\left(J y_{0}, p\right) \\
& \leq \alpha_{0} V\left(J x_{0}, p\right)+\left(1-\alpha_{0}\right) V\left(J \pi_{K}\left(J z_{0}-\beta T z_{0}\right), p\right) \\
& =\alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right) \phi\left(p, \pi_{K}\left(J z_{0}-\beta T z_{0}\right)\right) \\
& \leq \alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right) \phi\left(p, z_{0}\right) \\
& =\alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right) V\left(J z_{0}, p\right) \tag{3.3}\\
& \leq \alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right) V\left(\beta_{0} J x_{0}+\left(1-\beta_{0}\right) J S x_{0}, p\right) \\
& \leq \alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right)\left(\beta_{0} V\left(J x_{0}, p\right)+\left(1-\beta_{0}\right) V\left(J S x_{0}, p\right)\right) \\
& =\alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right)\left(\beta_{0} \phi\left(p, x_{0}\right)+\left(1-\beta_{0}\right) \phi\left(p, S x_{0}\right)\right) \\
& \leq \alpha_{0} \phi\left(p, x_{0}\right)+\left(1-\alpha_{0}\right)\left(\beta_{0} \phi\left(p, x_{0}\right)+\left(1-\beta_{0}\right) \phi\left(p, x_{0}\right)\right) \\
& =\phi\left(p, x_{0}\right),
\end{align*}
$$

which gives that $p \in C_{0}$. On the other hand, it is clear that $p \in Q_{0}=K$. Thus $V I(K, T) \bigcap$ $F(S) \subset C_{0} \cap Q_{0}$ and hence $x_{1}=\pi_{C_{0} \cap Q_{0}} J x_{0}$ is well defined. Suppose that $V I(K, T) \bigcap$ $F(S) \subset C_{n-1} \cap Q_{n-1}$ and x_{n} is well defined. Then the method in (3.3) implies that $\phi\left(p, y_{n}\right) \leq \phi\left(p, x_{n}\right)$ and that $p \in C_{n}$. Moreover, it follows from property (v) of the operator π_{K} and $x_{n}=\pi_{C_{n-1}} \cap Q_{n-1} J x_{0}$ that

$$
\left\langle J x_{0}-J x_{n}, x_{n}-p\right\rangle \geq 0
$$

which implies that $p \in Q_{n}$. Hence $\operatorname{VI}(K, T) \bigcap F(S) \subset C_{n} \bigcap Q_{n}$ and $x_{n+1}=\pi_{C_{n} \cap Q_{n}} J x_{0}$ is well-defined. Then by induction, $\operatorname{VI}(K, T) \bigcap F(S) \subset C_{n} \bigcap Q_{n}$ for each $n \in N \bigcup\{0\}$. Hence, the sequence $\left\{x_{n}\right\}$ generated by (3.1) is well defined.

It follows from the definition of Q_{n} that $x_{n}=\pi_{Q_{n}} J x_{0}$. Using $x_{n}=\pi_{Q_{n}} J x_{0}$ and $V I(K, T) \bigcap F(S) \subset Q_{n}$, we have $V\left(J x_{0}, x_{n}\right) \leq V\left(J x_{0}, p\right)$ for each $p \in V I(K, T) \bigcap F(S)$. Therefore, $\left\{V\left(J x_{0}, x_{n}\right)\right\}$ is bounded. Moreover, from the definition of V, we have that $\left\{x_{n}\right\}$ is bounded. Since $x_{n+1}=\pi_{C_{n} \cap Q_{n}} J x_{0} \in Q_{n}$ and $x_{n}=\pi_{Q_{n}} J x_{0}$, we have $V\left(J x_{0}, x_{n}\right) \leq$ $V\left(J x_{0}, x_{n+1}\right)$ for each $n \in N \bigcup\{0\}$. Therefore, $\left\{V\left(J x_{0}, x_{n}\right)\right\}$ is nondecreasing. So there exists the limit of $V\left(J x_{0}, x_{n}\right)$. By the construction of Q_{n}, we have that $Q_{m} \subset Q_{n}$ and $x_{m}=\pi_{Q_{m}} J x_{0} \in Q_{n}$ for any positive integer $m \geq n$. From property (vii) of the operator π_{K}, we have

$$
V\left(J x_{n}, x_{m}\right) \leq V\left(J x_{0}, x_{m}\right)-V\left(J x_{0}, x_{n}\right)
$$

for each $n \in N \bigcup\{0\}$ and any positive integer $m \geq n$. This implies that

$$
V\left(J x_{n}, x_{m}\right) \rightarrow 0, \quad \text { as } n, m \rightarrow \infty .
$$

By the definition of ϕ, we have

$$
\begin{equation*}
\phi\left(x_{m}, x_{n}\right) \rightarrow 0, \quad \text { as } n, m \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Using lemma 2.2, we obtain

$$
\left\|x_{m}-x_{n}\right\| \rightarrow 0, \quad \text { as } m, n \rightarrow \infty,
$$

and hence $\left\{x_{n}\right\}$ is Cauchy. Therefore, there exists a point $q \in K$ such that $x_{n} \rightarrow q$, as $n \rightarrow \infty$. Since $x_{n+1}=\pi_{C_{n} \cap Q_{n}} J x_{0} \in C_{n}$, from the definition of C_{n}, we also have

$$
\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right)
$$

for each $n \in N \bigcup\{0\}$. Tending $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0$. Using lemma 2.2, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

From $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $\left\|J y_{n}-J x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|J \pi_{K}\left(J z_{n}-\beta T z_{n}\right)-J x_{n}\right\|$ and $\limsup _{n \rightarrow \infty} \alpha_{n}<1$, we have

$$
\left\|J \pi_{K}\left(J z_{n}-\beta T z_{n}\right)-J x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Since J^{*} is also uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\left\|J^{*} J \pi_{K}\left(J z_{n}-\beta T z_{n}\right)-J^{*} J x_{n}\right\|=\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, then $\left\{J x_{n}\right\},\left\{J S x_{n}\right\}$ are also bounded. Moreover, since B is a uniformly smooth Banach space, we know that B^{*} is a uniformly convex Banach space. Therefore, lemma 2.3 is applicable. From property(iii) of the operator V, lemma 2.3, and the definition of S, we have

$$
\begin{align*}
\phi\left(p, z_{n}\right)= & V\left(J z_{n}, p\right) \leq V\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, p\right) \\
= & \left\|\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right\|^{2}-2\left\langle\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, p\right\rangle+\|p\|^{2} \\
\leq & \beta_{n}\left\|J x_{n}\right\|^{2}+\left(1-\beta_{n}\right)\left\|J S x_{n}\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
& -2 \beta_{n}\left\langle J x_{n}, p\right\rangle-2\left(1-\beta_{n}\right)\left\langle J S x_{n}, p\right\rangle+\|p\|^{2} \tag{3.9}\\
= & \beta_{n} \phi\left(p, x_{n}\right)+\left(1-\beta_{n}\right) \phi\left(p, S x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
\leq & \beta_{n} \phi\left(p, x_{n}\right)+\left(1-\beta_{n}\right) \phi\left(p, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
= & \phi\left(p, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) .
\end{align*}
$$

From property (viii) of the operator V and (3.2), (3.9), we obtain

$$
\begin{aligned}
\phi\left(p, y_{n}\right) & =V\left(J y_{n}, p\right) \\
& \leq \alpha_{n} V\left(J x_{n}, p\right)+\left(1-\alpha_{n}\right) V\left(J \pi_{K}\left(J z_{n}-\beta T z_{n}\right), p\right) \\
& =\alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, \pi_{K}\left(J z_{n}-\beta T z_{n}\right)\right) \\
& \leq \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, z_{n}\right) \\
& \leq \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right)\left(\phi\left(p, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right)\right) \\
& =\phi\left(p, x_{n}\right)-\left(1-\alpha_{n}\right) \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(1-\alpha_{n}\right) \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) & \leq \phi\left(p, x_{n}\right)-\phi\left(p, y_{n}\right) \\
& =2\left\langle J y_{n}-J x_{n}, p\right\rangle+\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2} \\
& =2\left\langle J y_{n}-J x_{n}, p\right\rangle+\left(\left\|x_{n}\right\|-\left\|y_{n}\right\|\right)\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right) .
\end{aligned}
$$

$\operatorname{By}(3.6)$, (3.7) and $\limsup _{n \rightarrow \infty} \alpha_{n}<1, \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$, we have $\lim _{n \rightarrow \infty} g\left(\left\|J x_{n}-J S x_{n}\right\|\right)=0$. By the property of the function g, we obtain $\lim _{n \rightarrow \infty}\left\|J x_{n}-J S x_{n}\right\|=0$. Since J^{*} is also uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J^{*} J x_{n}-J^{*} J S x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since $x_{n} \rightarrow q$, we have $q \in \tilde{F}(S)=F(S)$. Moreover, $S x_{n} \rightarrow q$ and $J S x_{n} \rightarrow J q$. Noting properties (iii), (viii) and (ii) of the operator V, we derive that

$$
\begin{aligned}
\phi\left(x_{n}, z_{n}\right) & =V\left(J z_{n}, x_{n}\right) \leq V\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, x_{n}\right), \\
& \leq \beta_{n} V\left(J x_{n}, x_{n}\right)+\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right), \\
& =\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right) .
\end{aligned}
$$

By the continuity of the operator V, we have $\lim _{n \rightarrow \infty} V\left(J S x_{n}, x_{n}\right)=V(J q, q)=0$ and hence $\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right)=0$. Therefore, $\lim _{n \rightarrow \infty} \phi\left(x_{n}, z_{n}\right)=0$. From lemma 2.2, we have

$$
\begin{equation*}
\left\|x_{n}-z_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

Using inequalities (3.8) and (3.11), we obtain

$$
\begin{equation*}
\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-z_{n}\right\| \leq\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \rightarrow 0 . \tag{3.12}
\end{equation*}
$$

Since $x_{n} \rightarrow q$, we have $z_{n} \rightarrow q$. By the continuity of the operators J, T and π_{K}, we have

$$
\begin{equation*}
\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-\pi_{K}(J q-\beta T q)\right\| \rightarrow 0 \tag{3.13}
\end{equation*}
$$

Noting

$$
\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-q\right\| \leq\left\|\pi_{K}\left(J z_{n}-\beta T z_{n}\right)-z_{n}\right\|+\left\|z_{n}-q\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Hence, it follows from the uniqueness of the limit that $q=\pi_{K}(J q-\beta T q)$. By Theorem 2.1, we have $q \in V I(K, T)$. Thus, $q \in V I(K, T) \bigcap F(S)$.

Finally, we show that $q=\pi_{V I(K, T)} \cap F(S) J x_{0}$. Since $q \in V I(K, T) \bigcap F(S)$, then from property(vii) of the operator π_{K}, we have

$$
\begin{equation*}
V\left(J \pi_{V I(K, T)} \cap F(S) J x_{0}, q\right)+V\left(J x_{0}, \pi_{V I(K, T)} \cap F(S) J x_{0}\right) \leq V\left(J x_{0}, q\right) . \tag{3.14}
\end{equation*}
$$

On the other hand, since $x_{n+1}=\pi_{C_{n}} \cap Q_{n} J x_{0}$, and $\operatorname{VI}(K, T) \bigcap F(S) \subset C_{n} \bigcap Q_{n}$ for each $n \in N \bigcup\{0\}$, then it follows from property(vii) of the operator π_{K} that

$$
\begin{equation*}
V\left(J x_{n+1}, \pi_{V I(K, T)} \cap F(S) J x_{0}\right)+V\left(J x_{0}, x_{n+1}\right) \leq V\left(J x_{0}, \pi_{V I(K, T)} \cap F(S) J x_{0}\right) . \tag{3.15}
\end{equation*}
$$

Moreover, by the continuity of the operator V, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V\left(J x_{0}, x_{n+1}\right)=V\left(J x_{0}, q\right) . \tag{3.16}
\end{equation*}
$$

Combining (3.14), (3.15) with (3.16), we obtain that $V\left(J x_{0}, q\right)=V\left(J x_{0}, \pi_{V I(K, T)} \cap F(S)\right.$ $\left.J x_{0}\right)$. Therefore, it follows from the uniqueness of $\pi_{V I(K, T)} \cap F(S)=x_{0}$ that $q=\pi_{V I(K, T) \cap F(S)}$ $J x_{0}$. This completes the proof.

If $S=I$, then (3.1) reduces to the modified Mann iteration for variational inequality (1.1) and so we obtain the following result:

Corollary 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a nonempty, closed convex subset of B. Assume that T is an operator of K into B^{*} that satisfies conditions (2.2) and (2.3) such that $V I(K, T) \neq \emptyset$. If $T: K \rightarrow B^{*}$ is continuous, and the
sequence $\left\{x_{n}\right\}$ is defined by the following modified Mann iteration

$$
\left\{\begin{array}{l}
x_{0} \in K \text { chosen arbitrarily, } \tag{3.17}\\
y_{n}=J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J \pi_{K}\left(J x_{n}-\beta T x_{n}\right)\right), \\
C_{0}=\left\{u \in K: \phi\left(u, y_{0}\right) \leq \phi\left(u, x_{0}\right)\right\}, \\
C_{n}=\left\{u \in C_{n-1} \bigcap Q_{n-1}: \phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)\right\}, \\
Q_{0}=K, \\
Q_{n}=\left\{u \in Q_{n-1} \bigcap C_{n-1}:\left\langle J x_{0}-J x_{n}, x_{n}-u\right\rangle \geq 0\right\}, \\
x_{n+1}=\pi_{C_{n} \cap Q_{n} J x_{0},}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ satisfies:

$$
0 \leq \alpha_{n}<1, \quad \text { and } \quad \limsup _{n \rightarrow \infty} \alpha_{n}<1
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\pi_{V I(K, T)} J x_{0}$, where $\pi_{V I(K, T)}$ is the generalized projection from B^{*} onto $V I(K, T)$.

Proof Taking $S=I$ in Theorem 3.1, by $x_{n} \in K$ and property(iv) of the operator π_{K}, we have $z_{n}=\pi_{K} J x_{n}=x_{n}$. Thus, we can obtain the desired conclusion.
Remark 3.1 Corollary 3.1 improves theorem 3.3 of [9] and Theorem 3.1 of [8] in the following senses:
(1) the condition in theorem 3.3 of [9] that $J-\beta T: K \rightarrow B^{*}$ is compact is removed, we only require that $T: K \rightarrow B^{*}$ is continuous;
(2) we obtain that the convergence point of $\left\{x_{n}\right\}$ is $\pi_{V I(K, T)} J x_{0}$, which is more concrete than related conclusions of [8] and [9].

If $K=B$, we obtain the following result:
Corollary 3.2 Let B be a uniformly convex and uniformly smooth Banach space. Let T be an operator of B into B^{*} that satisfy the following conditions: there exists a positive number β such that

$$
\left\langle T x, J^{*}(J x-\beta T x)\right\rangle \geq 0, \quad \forall x \in B
$$

and

$$
\langle T x, y\rangle \leq 0, \quad \forall x \in B, y \in T^{-1} 0
$$

where $T^{-1} 0=\{u \in B: T u=0\}$. Suppose that $S: B \rightarrow B$ is a relatively weak nonexpansive mapping with $T^{-1} 0 \bigcap F(S) \neq \emptyset$. If $T: B \rightarrow B^{*}$ is continuous, then the sequence $\left\{x_{n}\right\}$ defined by the following iteration process:

$$
\left\{\begin{array}{l}
x_{0} \in B \text { chosen arbitrarily } \\
z_{n}=J^{*}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right) \\
y_{n}=J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right)\left(J z_{n}-\beta T z_{n}\right)\right), \\
C_{0}=\left\{u \in B: \phi\left(u, y_{0}\right) \leq \phi\left(u, x_{0}\right)\right\} \\
C_{n}=\left\{u \in C_{n-1} \bigcap Q_{n-1}: \phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)\right\}, \\
Q_{0}=B, \\
Q_{n}=\left\{u \in Q_{n-1} \bigcap C_{n-1}:\left\langle J x_{0}-J x_{n}, x_{n}-u\right\rangle \geq 0\right\}, \\
x_{n+1}=\pi_{C_{n}} \cap Q_{n} J x_{0},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
0 \leq \alpha_{n}<1, \quad \text { and } \quad \limsup _{n \rightarrow \infty} \alpha_{n}<1 ; 0<\beta_{n}<1 \text { and } \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0
$$

converges strongly to $\pi_{T^{-1} 0 \cap F(S)} J x_{0}$.
Proof Taking $K=B$ in Theorem 3.1, by lemma 2.6 and Theorem 2.1, we have $\pi_{B}=$ J^{*} and $V I(B, T)=T^{-1} 0$. Therefore, it is easy to obtain the desired result by Theorem 3.1.

References

1. Alber, Ya.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A. (ed.) Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type, pp. 15-50. Marcel Dekker, New York (1996)
2. Alber, Ya., GuerreDelabriere, S.: On the projection methods for fixed point problems. Analysis 21, 17-39 (2001)
3. Alber, Ya., Notik, A.: On some estimates for projection operator in Banach space. Comm. Appl. Nonlinear Anal. 2, 47-56 (1995)
4. Alber, Ya., Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer. Math. J. 4, 39-54 (1994)
5. Chang, S.-s.: On Chidumes open questions and approximate solutions of multivalued strongly accretive mapping in Banach spaces. J. Math. Anal. Appl. 216, 94-111 (1997)
6. Chidume, C.E., Li, J.: Projection methods for approximating fixed points of Lipschitz suppressive operators. Panamer. Math. J. 15, 29-40 (2005)
7. Chidume, C.E.: Iterative solutions of nonlinear equations in smooth Banach spaces. Nonlinear Anal. 26, 1823-1834 (1996)
8. Li, J.: On the existence of solutions of variational inequalities in Banach spaces. J. Math. Anal. Appl. 295, 115-126 (2004)
9. Jianghua, F.: A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces. J. Math. Anal. Appl. 337, 1041-1047 (2008)
10. Kohasaka, F., Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in Banach spaces. Abstr. Appl. Anal. 2004(3), 239-249 (2004)
11. Li, J.: The generalized projection operator on reflexive Banach spaces and its applications. J. Math. Anal. Appl. 306, 55-71 (2005)
12. Butanriu, D., Reich, S., Zaslavski, A.J.: Asymtotic behavior of relatively nonexpansive opera- tors in Banach spaces. J. Appl. Anal. 7, 151-174 (2001)
13. Butanriu, D., Reich, S., Zaslavski, A.J.: Weakly convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. Funct. Anal. Optim. 24, 489-508 (2003)
14. Matsushita, S.-y., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 134, 257-266 (2005)
15. $\mathrm{Xu}, \mathrm{H} . \mathrm{K} .:$ Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
