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Abstract In this paper, we introduce an iterative sequence for finding a common element
of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions
of a variational inequality in a Banach space. Our results extend and improve the recent
ones announced by Li (J Math Anal Appl 295:115-126, 2004), Jianghua (J Math Anal Appl
337:1041-1047, 2008), and many others.
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1 Introduction

Let B be a Banach space, B* be the dual space of B. (-, -) denotes the duality pairing of B*
and B. Let K be a nonempty closed convex subset of B and 7 : K — B* be an operator.
We consider the following variational inequality:

Find x € K, such that (Tx,y —x) >0, forallye K. (1.1)

A point xg € K is called a solution of the variational inequality (1.1) if for every y €
K, (Txo,y — x0) > 0. The set of solutions of the variational inequality (1.1) is denoted by
VI(K, T). The variational inequality (1.1) has been intensively considered due to its various
applications in operations research, economic equilibrium and engineering design. When T
has some monotonicity, many iterative methods for solving the variational inequality (1.1)
have been developed, e.g., see [1-7].
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Most recently, applying the generalized projection operator in uniformly convex and uni-
formly smooth Banach spaces, Li [8] established the following convergence theorem of Mann
type iterative scheme for variational inequalities without assuming the monotonicity of 7 in
compact subsets of Banach spaces:

Theorem K1 (Li [8], Theorem 3.1) Let B be a uniformly convex and uniformly smooth
Banach space and let K be a compact convex subset of B. Let T : K — B* be a continuous
mapping on K such that

(Tx —&,J"(Jx — (Tx —&))) >0, forallx € K,
where & € B*. For any xo € K, define a Mann type iteration scheme as follows:
Xn+l = (I —ap)xn +onymg (Jxn — (Txy, —§)), n=12,3,...,

where {ay,} satisfies conditions

o
@0<a, <1, forallneN; (b)Y an(l—ay)=oc.
n=1
Then the variational inequality (Tx — &,y — x) > 0,Vy € K, [when & = O, this is the
variational inequality (1.1)] has a solution x* € K and there exists a subsequence {n;} C {n}
such that

X, = X%, asi — oo.

In addition, Fan [9] established some existence results of solutions and the convergence of
a Mann type iterative scheme for the variational inequality (1.1) in noncompact subsets of
Banach spaces. He proved the following theorem:

Theorem K2 (Fan [9], Theorem 3.3) Let B be a uniformly convex and uniformly smooth
Banach space and let K be a closed convex subset of B. Suppose that there exists a positive
number B, such that

(Tx,J*(Jx — BTx)) >0, forallx € K,
and J — BT : K — B* is compact. If
(Tx,y) <0, forallx e K,ye VI(K,T),

then the variational inequality (1.1) has a solution x* € K and the sequence {x,} defined by
the following iteration scheme:

X1 = (I —ap)xpy +oymg(Jxp — BTxy), n=1,2,3,...,

where {a,} satisfies: 0 < a < a, < b < 1 foralln € N, for some positive numbers
a, b € (0, 1) satisfying a < b, converges strongly to x* € K.

On the other hand, Kohasaka and Takahashi [10] introduced the definition of the relatively
weak nonexpansive mapping. They proved that J, = (J +rA)~!J, forr > 0 is relatively
weak nonexpansive, where A C B x B* is a continuous monotone mapping with A~10 # @
and B is a smooth, strictly convex and reflexive Banach space.

Motivated by these facts, our purpose in this paper is to establish an iteration sequence for
approximating a common element of the set of fixed points of a relatively weak nonexpansive
mapping and the set of solutions of the variational inequality (1.1) in noncompact subsets of
Banach spaces without assuming the compactness of the operator J — ST .
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2 Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively.

Let X, Y be Banach spaces, T : D(T) C X — Y, the operator T is said to be compact if
it is continuous and maps the bounded subsets of D(T') onto the relatively compact subsets
of Y.

We denote by J : B — 28 * the normalized duality mapping from B to 258 ", defined by

J(0) = {v e B*: (v.x) = v = |x|*}), VxeB.
The duality mapping J has the following properties:

(1) if B is smooth, then J is single-valued;
(ii) if B is strictly convex, then J is one-to-one;
(iii) if B is reflexive, then J is surjective.
(iv) if B isuniformly smooth, then J is uniformly norm-to-norm continuous on each bounded
subset of B.

Let B be a reflexive, strictly convex, smooth Banach space and J the duality mapping
from B into B*. Then J* is also single-valued, one-to-one, surjective, and it is the duality
mapping from B* into B, i.e. J*J = I.

When {x, } is a sequence in B, we denote strong convergence of {x,}tox € B by x, — x.

LetU = {x € B : |x|| = 1}. A Banach space B is said to be strictly convex if || =5 <
forall x, y € U and x # y. It is also said to be uniformly convex if hm lxn — yn =0

for any two sequences {x,}, {y,} in U and hm I 2 J”” I=1.A Banach space B is said to

llx+ey || flx1l

be smooth provided 1111(1) exists for each x,y € U.Itis also said to be uniformly

smooth if the limit is attained umformly forx,y e U.
In [2,4], Alber introduced the functional V : B* x B — R defined by

Vg, x) = llglI* — 2(¢, x) + lIx]%

where ¢ € B* and x € B.
It is easy to see that

Vg, x) = (gl — x> 2.1)

Thus the functional V : B* x B — R™ is nonnegative.

Definition 2.1 (See [9]) If B is a uniformly convex and uniformly smooth Banach space, the
generalized projection wg : B* — K is a mapping that assigns an arbitrary point ¢ € B* to
the minimum point of the functional V (¢, x), i.e., a solution to the minimization problem

V¢, mk(P)) = inf V(g,y).
yek
Li [11] proved that the generalized projection operator 7g : B* — K is continuous, if B

is a reflexive, strictly convex and smooth Banach space.
The functional ¢ : B x B — R is defined by

¢(x,y)=V(Jy,x), Vx,y€B.
The following properties of the operators g, V are useful for our paper. (See, for example,

[1,11])
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(i) V :B* x B— R is continuous.
(i) V(¢,x) =0ifand only if ¢ = Jx.
(i) V(Irmgep,x) < V(¢,x)forall¢p € B*and x € B.
(iv) The operator g is J fixed at each point x € K, i.e., rx (Jx) = x.
(v) If B is smooth, then for any given ¢ € B* x € K,x € ng¢ if and only if
(p —Jx,x —y)>0,forall y € K.
(vi) The operator g : B* — K is single valued if and only if B is strictly convex.
(vii) If B is smooth, then for any given point ¢ € B*, x € ng¢, the following inequality
holds

V(iJx,y) =V(g,y) =V(¢,x) VyeK.

(viii) V (¢, x) is convex with respect to ¢ when x is fixed and with respect to x when ¢ is
fixed.
(ix) If B is reflexive, then for any point ¢ € B*, wg (¢) is a nonempty, closed, convex and
bounded subset of K.

Remark 2.1 Itis easy to see that if B is a strictly convex and smooth Banach space, then for
X,y €B,¢p(x,y)=0,1ie.V(Jy,x) = 0if and only if x = y. It is sufficient to show that if
V(Jy, x) = 0 then x = y. From property (ii) of the operator V, we have Jx = Jy. Since J
is one-to-one, we have x = y.

Using the properties of generalized projection operator wx, Alber proved the following
theorem in [1].

Theorem 2.1 Let B be a reflexive, strictly convex and smooth Banach space with dual space
B*. Let T be an arbitrary operator from Banach space B to B*, o an arbitrary fixed positive
number. Then the point x € K C B is a solution of variational inequality (1.1) if and only if
X is a solution of the operator equation in B

x=ng(Jx —aTx).

Let S be a mapping from K into itself. We denote by F(S) the set of fixed points of S.
A point p in K is said to be an asymptotic fixed point of S [12] if K contains a sequence
{x,} which converges weakly to p such that lim,,_, » ||x, — Sx, || = 0. The set of asymptotic
fixed point of S will be denoted by F (S). A mapping S from K into itself is called relatively
nonxpansive (see e.g., [12]) if I:“(S) = F(S) and ¢(p, Sx) < ¢(p,x) forall x € K and
p € F(S). The asymptotic behavior of relatively nonexpansive mappings were studied in
[12,13]. A point p in K is said to be a strong asymptotic fixed point of S if K contains a
sequence {x,} which converges strongly to p such that lim,_,  ||x;, — Sx,| = 0. The set
of strong asymptotic fixed points of S will be denoted by F(S). A mapping S from K into
itself is called relatively weak nonexpansive if F (S) = F(S) and ¢(p, Sx) < ¢(p, x) for
all x € K and p € F(S). If B is a smooth strictly convex and reflexive Banach space, and
A C B x B* is a continuous monotone mapping with A=10 # #, then it is proved in [10]
that J, = (J+rA)~LJ, forr > Ois relatively weak nonexpansive. Moreover, if S : K — K
is relatively weak nonexpansive, then using the definition of ¢ (i.e. the same argument as in
the proof of [14, p.260]) one can show that F(S) is closed and convex.

It is obvious that relatively nonexpansive mapping is relatively weak nonexpansive map-
ping. In fact, for any mapping S : K — K we have F(S) C F(S) C ﬁ(S). Therefore, if S
is a relatively nonexpansive mapping, then F(S) = F S) = F (S).

The following lemmas are useful for the proof of our main theorem.
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Lemma 2.2 (See [14]) Let B be a uniformly convex and smooth Banach space and let
{yn}, {zn} be two sequences of B. If ¢ (yn, zn) — 0, and either {y,}, or {z,} is bounded, then
Yo — zn — O.

Lemma 2.3 (See [15]) Let B be a uniformly convex Banach space and let r > 0. Then there
exists a continuous strictly increasing convex function g : [0, 2r] — R such that g(0) = 0
and

lex + (L =0yl* < tlxl?+ A = Dlyl* — (1 = Dg(llx — yl),
forallx,y € B, andt € [0, 1], where B, ={z € B : ||z|| < r}.

Lemma 2.4 (See [5]) Let B be a uniformly convex and uniformly smooth Banach space. We
have

¢+ @17 < IB]° +2(®, J*(¢ + P)), V¢, D € B*.

Lemma 2.5 Let B be a uniformly convex and uniformly smooth Banach space, let K be a
nonempty, closed convex subset of B. Suppose that there exists a positive number B such that

(Tx, J*(Jx — BTx)) >0, forallx € K 2.2)
and
(Tx,y) <0, VxeK,ye VI(K,T). (2.3)
Then VI(K, T) is closed and convex.

Proof We first show that VI(K, T) is closed. Let {x,} be a sequence of VI(K, T') such that
X, — X € K. From the definition of ¢, the property of V, lemma 2.4 and conditions
(2.2) (2.3), we have
¢, g (JX — BTR)) = V(Ing (JE — BTR), x)
S VX - BTX, xp)
= [|J% — BTRI* = 2(J% — BT, x4) + [|xa)?
< JRIP = 2B(T%, J*(J& — BTR)) — 2(J %, xn)
+2B(T%, xn) + [l
< TRIP = 2(J%, x) + 1)
= ¢ (xp, X),
for each n € N. This implies,
0<¢@, mg(Jx - BTR)) = lim ¢(x,, mg(JX — BTX))
n—0o0
< lim ¢(x,, %) = ¢(X, %) =0.
n—o0
Therefore, we obtain X = g (Jx — BTx). So,we have x € VI(K, T). Next, we show that

VI(K,T) is convex. For x,y € VI(K,T), andt € (0,1), put z = tx + (1 — t)y. It is
sufficient to show z = wg (Jz — BT z). In fact, we have

0< ¢z, tx(Jz — BT2)) = V(Ink (Jz — BT2), 2)

V(Jz—BTz,2) = |lJz — BTz|> —2(Jz — BTz, 2) + |1z]?
1Tz = 2B8(Tz, J*(Jz — BT2)) — 2(Jz, 2) + 2B(Tz, z) + ||z|I?
—2B(Tz, J*(Jz — BT2)) +2B(Tz, 2).

(2.4)

1A IA
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By (2.4), (2.2) and (2.3), we have
0 <@ rx(Jz—pT2) < —=2B(Tz, J*(Jz — BT2)) +2B(Tz,2)
=2B(Tz,2) =2B(Tz, tx + (1 —1)y) =2p1(Tz, x) + 28(1 —1)(Tz, y) < 0.
This implies z = wx (Jz — BT z). Therefore, VI(K, T) is closed and convex. ]
Lemma 2.6 If B is a reflexive, strictly convex and smooth Banach space, then g = J*.

Proof For every ¢ € B*, by definition of V and (2.1), we have
0= V@, J*¢) = I$I* = 2(¢, J*¢) + 1T $II> = 0.

By definition of the operator 7w, we have J*¢ € mp¢. Since 7p is single-valued, we have
7TB¢ = J*¢. O

3 Main results

For any xo € K, we define the iteration process {x,} as follows:

xo € K chosen arbitrarily,

Zn = g Budxn + A — Br)J Sxp),

Yn = J*(Olnjxn +A—a)Jrg(Jz, — ,BTZn))»

Co = {ueK:p, y) < ¢, xp)},

Cp = {ueCyy ﬂ On-1:9W, yp) < ¢u,x,)},

Qo = K,

O, = {” € 0u1 ncnfl : (JXO — Jxp, xp _u> = 0}7
Xn4l = T, N 0,7 X0,

3.1)

where {o,}, {8, ]} satisfy:

0<a, <1, and limsupe, < 1;0 < B, < landliminf B,(1 — B,) > 0.
n—00 n—00

Theorem 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a
nonempty, closed convex subset of B. Assume that T is an operator of K into B* that satisfy
conditions (2.2) and (2.3) and S : K — K is a relatively weak nonexpansive mapping with
VI(K, T)(WF(S) # @. If T : K — B* is continuous, then the sequence {x,} defined by
(3.1) converges strongly to Wy 1 (k. 1) () F(5)J X0-

Proof We first show that C,, and Q,, are closed and convex for each n € N [J{0}. By the
definition of C,, and Q,,, it is obvious that Cj, is closed and Q,, is closed and convex for each
n € N [J{0}. We show that C,, is convex. Since ¢ (u, yn) < ¢ (u, x,) is equivalent to

2(Jx0 = Ty, ) + lyull® = x> < 0,

it follows that C, is convex. Next, we show that VI(K, T)[) F(S) C C, () Qn for all
n € N J{0}. Let p € VI(K, T) () F(S), then, from the definitions of ¢ and V, property (iii)
of V, lemma 2.4, conditions (2.2) and (2.3), we have
o(p, 7k (Jzn — BTzp)) = VUrk(Jzu — BT2y), p) < V(Jzu — BT 24, p)
= 1Jzn — BTzall> = 20020 — BTzw, p) + IpIIP (32)
< Wznll* = 28(Tzn. J*(Jzu — BTzn))
—2(Jzn — BTz, p) + P
< Wzl® = 2020, p) + 1PIP = ¢ (P, 20),
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for each n € N | J{0}. Therefore, by properties (viii) and (iii) of the operator V, (3.2), the
definition of S, we obtain

o(p,y0) = V(Jyo, p)
<agV(Jxo, p) + (A —ap)V(Img(Jzo — BT20), P)
= app(p, x0) + (1 —ap)@(p, mx (Jzo — BT z0))
< app(p, x0) + (1 — ap)d(p, z0)
= app(p, x0) + (1 —a9)V(Jz0, p) (3.3)
< app(p, x0) + (1 — ap)V(BoJxo + (1 — Bo)J Sxo, p) '
< app(p, x0) + (1 —ap)(BoV (Jxo, p) + (1 — Bo)V (J Sxo, p))
= app(p, x0) + (1 — ) (Bop(p, x0) + (1 — o) (p, Sxo0))
< app(p, x0) + (1 — ag)(Bop (p, x0) + (1 — Bo)p(p, x0))

¢ (P, x0),

which gives that p € Cp. On the other hand, it is clear that p € Qo = K. Thus VI(K, T) )
F(S) € Co() Qo and hence x; = Ty N 0o X0 is well defined. Suppose that VI(K, T) N
F(S) C Ch—1() Qn-1 and x, is well defined. Then the method in (3.3) implies that
& (p, yn) < ¢(p, x,) and that p € C,,. Moreover, it follows from property(v) of the operator
g and x, = 7¢, | N 0n_1J%0 that

(Jxo — Jxp, xy — p) =0,

which implies that p € Q. Hence VI(K, T) (] F(S) C Cy () Qn and X441 = 7¢, ) 0,/ X0
is well-defined. Then by induction, VI(K, T) (| F(S) C C, () O, for each n € N [J{0}.
Hence, the sequence {x,} generated by (3.1) is well defined.

It follows from the definition of Q, that x, = mg,Jxo. Using x, = mg,Jxo and
VI(K,T)( F(S) C Q,, wehave V(Jxg, x,)<V (Jxp, p) foreachp € VI(K, T)(F(S).
Therefore,{V (Jxg, x,)} is bounded. Moreover, from the definition of V', we have that {x,}
is bounded. Since x,4+1 = 7, No.JX0 € On and x, = mg, Jxo, we have V (Jxp, x,) <
V (Jxo, xn+1) for each n € N |J{0}. Therefore, {V(Jxo, x,)} is nondecreasing. So there
exists the limit of V (Jxp, x,). By the construction of Q,, we have that Q,, C Q, and
Xm = 1o, Jxo € Q, for any positive integer m > n. From property (vii) of the operator 7g,
we have

V(Ixp, xm) < V(Ix0, Xm) — V(JIx0, Xn)
for each n € N | J{0} and any positive integer m > n. This implies that
V(Jxy, xpm) — 0, asn,m — oo.
By the definition of ¢, we have
¢ (X, xy) —> 0, asn,m — oo. 3.4
Using lemma 2.2, we obtain
[|Xm — x4l = 0, asm,n — oo,

and hence {x, } is Cauchy. Therefore, there exists apointg € K suchthatx, — ¢, asn — oo.
Since x,+1 = 7¢, N o.Jx0 € Cy, from the definition of C,,, we also have

& (Xnt1, Yu) < G (Xpi1, Xn)
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for each n € N |J{0}. Tending n — oo, we have lim ¢ (x,+1, y») = 0. Using lemma 2.2,
n—oo

we obtain
lim |lxp1 — yull = lim [[x;41 — xu || = 0. (3.5)
n—00 n—00
From [|x, — yull < llxn — Xnt1ll + [[Xn+1 — Yull, we have
lim lx, — yull = 0. (3.6)
n—0o0
Since J is uniformly norm-to-norm continuous on bounded sets, we have
lim ||Jx, — Jy,|| =0. 3.7
n—oo
Since |Jy, — Jxpll = A —a) Ik (Jzn — BT z,) — J x| and limsup o, < 1, we have

n—oo

Wrx(Jzn — BTzp) — Jxull = 0, asn — oo.
Since J* is also uniformly norm-to-norm continuous on bounded sets, we have

||J*J7TK(JZn —BTzy) — J*an” = |tk (Jzn — BT zn) — xpll —> 0, asn — oo.
(3.8)

Since {x,}is bounded, then {Jx,}, {J Sx,,} are also bounded. Moreover, since B is a uniformly
smooth Banach space, we know that B* is a uniformly convex Banach space. Therefore,
lemma 2.3 is applicable. From property(iii) of the operator V, lemma 2.3, and the definition
of S, we have

d(p.zn) = VJzn, p) S V(BpJxn + (1 = Bn)J Sxn, p)
= 1B xn + (1 = B) I Sxu 1> = 2(Bu T xn + (1 = Bu) I Sxn. p) + Il pII?
< BullJxall? + (1 = BT Sxall* = Bu(1 — Bu)g (1 X0 — J Sxll)
— 2B5(Jxn, p) —2(1 = B)(J Sxn. p) + I PII? (3.9)
= Bud(p, xun) + (1 — B (p, Sxn) — Bu(1 — Bu)g I Jxn — J Sxnl)
< Bud(p,xn) + (1 = B)d(p, xn) — (1 — B)g IS xn — J Sxn )
= ¢(p.xn) = Bu(1 = Bu)g (IS xn — J Sxn ).

From property (viii) of the operator V and (3.2), (3.9), we obtain

¢ (p, yn) = VJyn, P)
<anV(Jxn, p) + (1 —0on)V(Ing (Jzu — BT z0), p)
= on@(p, xn) + (L —an)@(p, tx (Jzn — BTz4))
=< Oln¢(P, xn) + (1 - Oln)¢(l7» Zn)
< an@(p, xn) + (1 —an)(@(p, xn) — Bu(1 — B)gUlJxn — I Sxn D))
=¢(p, xn) — (1 —an)Bp(1 = Bu)g (1 Jxp — J Sxnl)).
Therefore,

(I=0n) B (1=B) gl T xn =TI Sxull) < (P, xn) — @ (P, yn)
=2(Jyn — Jxn, p) + 1% l1* = llynll?
= 2(Jyn — Jxp, p) + (xXull = Nyn D Axnll + 11y lD)-
By (3.6),(3.7)andlim sup o, < 1, liminf 8, (1 — B,) > 0, wehave lim g(||Jx,—J Sx,|)=0.
n—00 n—00 n—00
By the property of the function g, we obtain nlggo |Jx, — JSxy|| = 0. Since J* is also uni-

formly norm-to-norm continuous on bounded sets, we have

lim |lx, — Sx,|| = lim ||J*Jx, — J*JSx,| = 0. (3.10)
n—o0 n—oo
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Since x, — ¢, we have ¢ € 13(5) = F(S). Moreover, Sx, — g and JSx,, — Jq. Noting
properties (iii), (viii) and (ii) of the operator V, we derive that

O xn,z0) = V(I zn, xn) < V(BuJxn + (1 = B)J Sxu, xn),
< BV (I X, xn) + (1 = B) V(I Sxp, X)),
= =BIV{ISxy, xu).

By the continuity of the operator V, we have lim V(JSx,, x,) = V(Jq, ¢) = 0 and hence
n—oo

lim (1 — B8,)V(JSx,, x,) = 0. Therefore, lim ¢ (x,, z,) = 0. From lemma 2.2, we have
n—oo n—o0

lxn — znll = 0, asn — oo. (3.11)
Using inequalities (3.8) and (3.11), we obtain
7wk (Jzn — BTzp) — znll < Itk (Jzu — BT zn) — Xnll + lxn — znll = 0. (3.12)
Since x,, — ¢, we have z, — ¢. By the continuity of the operators J, T and mg, we have
Ik (Jzn — BT 2n) — ik (Jq — BT )|l — 0. (3.13)
Noting
7wk (Jzn — BTzn) — qll < Ik (Jzn — BTzn) — znll + llzn — qll = 0, asn — oo.
Hence, it follows from the uniqueness of the limit that g = wx (Jg — BT q). By Theorem 2.1,
wehave g € VI(K,T). Thus,q € VI(K,T) [ F(S).

Finally, we show that ¢ = 7y k1) F(s)J X0. Since g € VI(K, T) ) F(S), then from
property(vii) of the operator g, we have

V(J”VI(K,T)ﬂ F(S)JX(), q) + V(Jxp, nVI(K,T)ﬂ F(S)Jx()) < V(Jxp, q) (3.14)

On the other hand, since x,+1 = 7¢, n @,/ %0, and VI(K, T) () F(S) C C, [ Qy for each
n € N [J{0}, then it follows from property(vii) of the operator g that

V(I xXnt1, Tk, Ty F$)Ix0) + V(I xo, Xn1) < V(I x0, Ty ik,1) 0 F(5)J X0)-

(3.15)
Moreover, by the continuity of the operator V, we get that
lim V(Jxo, x4+1) = V(Jx0, q). (3.16)
n—oo

Combining (3.14), (3.15) with (3.16), we obtain that V (Jxo, )=V (Jx0, Ty 1k, 1) N F(5)
Jx0). Therefore, itfollows from the uniqueness of Ty (k1) N Fs) /X0 thatg=my 1 (k. Ty F(5)
Jx¢. This completes the proof. O

If S = I, then (3.1) reduces to the modified Mann iteration for variational inequality (1.1)
and so we obtain the following result:

Corollary 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a
nonempty, closed convex subset of B. Assume that T is an operator of K into B* that satisfies
conditions (2.2) and (2.3) such that VI(K,T) # W. If T : K — B* is continuous, and the
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sequence {x,} is defined by the following modified Mann iteration

xo € K chosen arbitrarily,

yn = T xy + A —an)Jmx (Jx, — BT X)),

Co = {ueK:pu,y) < ¢u,xp)},

Cn = {u€Coi (N Qn—1: ¢, yp) < P, x)}, (3.17)
Qo = K,

On = {ue @y ﬂcn—l s {Jxo — Jxp, Xy —u) = 0},

Xntl = Tc, 0, X0,

where {ay,} satisfies:

0<a, <1, and limsupo, < 1.
n—0o0

Then the sequence {x,} converges stronglytomy j(x  1yJ X0, Where wy (k1) is the generalized
projection from B* onto VI(K, T).

Proof Taking S = I in Theorem 3.1, by x, € K and property(iv) of the operator 7g, we
have z,, = mx Jx,, = x,,. Thus, we can obtain the desired conclusion. ]

Remark 3.1 Corollary 3.1 improves theorem 3.3 of [9] and Theorem 3.1 of [8] in the follow-
ing senses:

(1) the condition in theorem 3.3 of [9] that / — BT : K — B* is compact is removed, we
only require that 7 : K — B* is continuous;

(2) we obtain that the convergence point of {x,} is wvk,1)Jx0, which is more concrete
than related conclusions of [8] and [9].

If K = B, we obtain the following result:

Corollary 3.2 Let B be a uniformly convex and uniformly smooth Banach space. Let T be

an operator of B into B* that satisfy the following conditions: there exists a positive number
B such that

(Tx,J*(Jx —BTx)) >0, Vx€B

and

(Tx,y) <0, VxeB,yeT™ 0,

where T~10 = {u € B : Tu = 0}. Suppose that S : B — B is a relatively weak nonexpan-
sive mapping with T~10 N F(S) #@.If T : B— B* is continuous, then the sequence {x,}
defined by the following iteration process:

[ X0 € Bchosen arbitrarily,
in = J*(ﬂnjxn + (1 — Bp)J Sxp)
Yn = J*(en I xp + (1 — o) (Jzy — BTzn)),
Co = {u € B:¢u, yo) < ¢(u, x0)},
Ch = {ueCo1 () Qn—1: 9, yn) < ¢u, xn)},

Qo = B,
On = {ue 0y ﬂcn—l s (Jxo — Jxu, x, —u) > 0},
Yntl = Tc, N @,J X0,

where {ay,}, {Bn} satisfy:

0<a, <1, and limsupa, <1;0 < B, <1 and liminf B,(1 — B,) > 0,
n—00 n—o0
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converges strongly 10 Tr-19 p(s)J Xo-

Proof Taking K = B in Theorem 3.1, by lemma 2.6 and Theorem 2.1, we have np =
J*and VI(B, T) = T~'0. Therefore, it is easy to obtain the desired result by Theorem 3.1.

[m}
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