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Abstract In this paper, we introduce an iterative sequence for finding a common element
of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions
of a variational inequality in a Banach space. Our results extend and improve the recent
ones announced by Li (J Math Anal Appl 295:115–126, 2004), Jianghua (J Math Anal Appl
337:1041–1047, 2008), and many others.
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1 Introduction

Let B be a Banach space, B∗ be the dual space of B. 〈·, ·〉 denotes the duality pairing of B∗
and B. Let K be a nonempty closed convex subset of B and T : K → B∗ be an operator.
We consider the following variational inequality:

Find x ∈ K , such that 〈T x, y − x〉 ≥ 0, for all y ∈ K . (1.1)

A point x0 ∈ K is called a solution of the variational inequality (1.1) if for every y ∈
K , 〈T x0, y − x0〉 ≥ 0. The set of solutions of the variational inequality (1.1) is denoted by
V I (K , T ). The variational inequality (1.1) has been intensively considered due to its various
applications in operations research, economic equilibrium and engineering design. When T
has some monotonicity, many iterative methods for solving the variational inequality (1.1)
have been developed, e.g., see [1–7].
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Most recently, applying the generalized projection operator in uniformly convex and uni-
formly smooth Banach spaces, Li [8] established the following convergence theorem of Mann
type iterative scheme for variational inequalities without assuming the monotonicity of T in
compact subsets of Banach spaces:

Theorem K1 (Li [8], Theorem 3.1) Let B be a uniformly convex and uniformly smooth
Banach space and let K be a compact convex subset of B. Let T : K → B∗ be a continuous
mapping on K such that

〈T x − ξ, J ∗(J x − (T x − ξ))〉 ≥ 0, for all x ∈ K ,

where ξ ∈ B∗. For any x0 ∈ K , define a Mann type iteration scheme as follows:

xn+1 = (1 − αn)xn + αnπK (J xn − (T xn − ξ)), n = 1, 2, 3, . . . ,

where {αn} satisfies conditions

(a) 0 ≤ αn ≤ 1, for all n ∈ N ; (b)

∞∑

n=1

αn(1 − αn) = ∞.

Then the variational inequality 〈T x − ξ, y − x〉 ≥ 0,∀y ∈ K , [when ξ = 0, this is the
variational inequality (1.1)] has a solution x∗ ∈ K and there exists a subsequence {ni } ⊂ {n}
such that

xni → x∗, as i → ∞.

In addition, Fan [9] established some existence results of solutions and the convergence of
a Mann type iterative scheme for the variational inequality (1.1) in noncompact subsets of
Banach spaces. He proved the following theorem:

Theorem K2 (Fan [9], Theorem 3.3) Let B be a uniformly convex and uniformly smooth
Banach space and let K be a closed convex subset of B. Suppose that there exists a positive
number β, such that

〈T x, J ∗(J x − βT x)〉 ≥ 0, for all x ∈ K ,

and J − βT : K → B∗ is compact. If

〈T x, y〉 ≤ 0, for all x ∈ K , y ∈ V I (K , T ),

then the variational inequality (1.1) has a solution x∗ ∈ K and the sequence {xn} defined by
the following iteration scheme:

xn+1 = (1 − αn)xn + αnπK (J xn − βT xn), n = 1, 2, 3, . . . ,

where {αn} satisfies: 0 < a ≤ αn ≤ b < 1 for all n ∈ N , for some positive numbers
a, b ∈ (0, 1) satisfying a < b, converges strongly to x∗ ∈ K .

On the other hand, Kohasaka and Takahashi [10] introduced the definition of the relatively
weak nonexpansive mapping. They proved that Jr = (J + r A)−1 J, for r > 0 is relatively
weak nonexpansive, where A ⊂ B × B∗ is a continuous monotone mapping with A−10 �= ∅
and B is a smooth, strictly convex and reflexive Banach space.

Motivated by these facts, our purpose in this paper is to establish an iteration sequence for
approximating a common element of the set of fixed points of a relatively weak nonexpansive
mapping and the set of solutions of the variational inequality (1.1) in noncompact subsets of
Banach spaces without assuming the compactness of the operator J − βT .
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2 Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively.

Let X, Y be Banach spaces, T : D(T ) ⊂ X → Y, the operator T is said to be compact if
it is continuous and maps the bounded subsets of D(T ) onto the relatively compact subsets
of Y .

We denote by J : B → 2B∗
the normalized duality mapping from B to 2B∗

, defined by

J (x) := {v ∈ B∗ : 〈v, x〉 = ‖v‖2 = ‖x‖2}, ∀x ∈ B.

The duality mapping J has the following properties:

(i) if B is smooth, then J is single-valued;
(ii) if B is strictly convex, then J is one-to-one;

(iii) if B is reflexive, then J is surjective.
(iv) if B is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded

subset of B.

Let B be a reflexive, strictly convex, smooth Banach space and J the duality mapping
from B into B∗. Then J ∗ is also single-valued, one-to-one, surjective, and it is the duality
mapping from B∗ into B, i.e. J ∗ J = I.

When {xn} is a sequence in B, we denote strong convergence of {xn} to x ∈ B by xn → x .

Let U = {x ∈ B : ‖x‖ = 1}. A Banach space B is said to be strictly convex if ‖ x+y
2 ‖ < 1

for all x, y ∈ U and x �= y. It is also said to be uniformly convex if lim
n→∞ ‖xn − yn‖ = 0

for any two sequences {xn}, {yn} in U and lim
n→∞ ‖ xn+yn

2 ‖ = 1. A Banach space B is said to

be smooth provided lim
t→0

‖x+t y‖−‖x‖
t exists for each x, y ∈ U. It is also said to be uniformly

smooth if the limit is attained uniformly for x, y ∈ U.

In [2,4], Alber introduced the functional V : B∗ × B → R defined by

V (φ, x) = ‖φ‖2 − 2〈φ, x〉 + ‖x‖2,

where φ ∈ B∗ and x ∈ B.
It is easy to see that

V (φ, x) ≥ (‖φ‖ − ‖x‖)2. (2.1)

Thus the functional V : B∗ × B → R+ is nonnegative.

Definition 2.1 (See [9]) If B is a uniformly convex and uniformly smooth Banach space, the
generalized projection πK : B∗ → K is a mapping that assigns an arbitrary point φ ∈ B∗ to
the minimum point of the functional V (φ, x), i.e., a solution to the minimization problem

V (φ, πK (φ)) = inf
y∈K

V (φ, y).

Li [11] proved that the generalized projection operator πK : B∗ → K is continuous, if B
is a reflexive, strictly convex and smooth Banach space.

The functional φ : B × B → R is defined by

φ(x, y) = V (J y, x), ∀x, y ∈ B.

The following properties of the operators πK , V are useful for our paper. (See, for example,
[1,11])
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(i) V : B∗ × B → R is continuous.
(ii) V (φ, x) = 0 if and only if φ = J x .

(iii) V (JπK φ, x) ≤ V (φ, x) for all φ ∈ B∗ and x ∈ B.

(iv) The operator πK is J fixed at each point x ∈ K , i.e., πK (J x) = x .

(v) If B is smooth, then for any given φ ∈ B∗, x ∈ K , x ∈ πK φ if and only if
〈φ − J x, x − y〉 ≥ 0, for all y ∈ K .

(vi) The operator πK : B∗ → K is single valued if and only if B is strictly convex.
(vii) If B is smooth, then for any given point φ ∈ B∗, x ∈ πK φ, the following inequality

holds

V (J x, y) ≤ V (φ, y) − V (φ, x) ∀y ∈ K .

(viii) V (φ, x) is convex with respect to φ when x is fixed and with respect to x when φ is
fixed.

(ix) If B is reflexive, then for any point φ ∈ B∗, πK (φ) is a nonempty, closed, convex and
bounded subset of K .

Remark 2.1 It is easy to see that if B is a strictly convex and smooth Banach space, then for
x, y ∈ B, φ(x, y) = 0, i.e.V (J y, x) = 0 if and only if x = y. It is sufficient to show that if
V (J y, x) = 0 then x = y. From property (ii) of the operator V , we have J x = J y. Since J
is one-to-one, we have x = y.

Using the properties of generalized projection operator πK , Alber proved the following
theorem in [1].

Theorem 2.1 Let B be a reflexive, strictly convex and smooth Banach space with dual space
B∗. Let T be an arbitrary operator from Banach space B to B∗, α an arbitrary fixed positive
number. Then the point x ∈ K ⊂ B is a solution of variational inequality (1.1) if and only if
x is a solution of the operator equation in B

x = πK (J x − αT x).

Let S be a mapping from K into itself. We denote by F(S) the set of fixed points of S.

A point p in K is said to be an asymptotic fixed point of S [12] if K contains a sequence
{xn} which converges weakly to p such that limn→∞ ‖xn − Sxn‖ = 0. The set of asymptotic
fixed point of S will be denoted by F̂(S). A mapping S from K into itself is called relatively
nonxpansive (see e.g., [12]) if F̂(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ K and
p ∈ F(S). The asymptotic behavior of relatively nonexpansive mappings were studied in
[12,13]. A point p in K is said to be a strong asymptotic fixed point of S if K contains a
sequence {xn} which converges strongly to p such that limn→∞ ‖xn − Sxn‖ = 0. The set
of strong asymptotic fixed points of S will be denoted by F̃(S). A mapping S from K into
itself is called relatively weak nonexpansive if F̃(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for
all x ∈ K and p ∈ F(S). If B is a smooth strictly convex and reflexive Banach space, and
A ⊂ B × B∗ is a continuous monotone mapping with A−10 �= ∅, then it is proved in [10]
that Jr = (J +r A)−1 J, for r > 0 is relatively weak nonexpansive. Moreover, if S : K → K
is relatively weak nonexpansive, then using the definition of φ (i.e. the same argument as in
the proof of [14, p.260]) one can show that F(S) is closed and convex.

It is obvious that relatively nonexpansive mapping is relatively weak nonexpansive map-
ping. In fact, for any mapping S : K → K we have F(S) ⊂ F̃(S) ⊂ F̂(S). Therefore, if S
is a relatively nonexpansive mapping, then F(S) = F̃(S) = F̂(S).

The following lemmas are useful for the proof of our main theorem.
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Lemma 2.2 (See [14]) Let B be a uniformly convex and smooth Banach space and let
{yn}, {zn} be two sequences of B. If φ(yn, zn) → 0, and either {yn}, or {zn} is bounded, then
yn − zn → 0.

Lemma 2.3 (See [15]) Let B be a uniformly convex Banach space and let r > 0. Then there
exists a continuous strictly increasing convex function g : [0, 2r ] → R such that g(0) = 0
and

‖t x + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t (1 − t)g(‖x − y‖),
for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ B : ‖z‖ ≤ r}.
Lemma 2.4 (See [5]) Let B be a uniformly convex and uniformly smooth Banach space. We
have

‖φ + �‖2 ≤ ‖φ‖2 + 2〈�, J ∗(φ + �)〉, ∀φ,� ∈ B∗.

Lemma 2.5 Let B be a uniformly convex and uniformly smooth Banach space, let K be a
nonempty, closed convex subset of B. Suppose that there exists a positive number β such that

〈T x, J ∗(J x − βT x)〉 ≥ 0, for all x ∈ K (2.2)

and

〈T x, y〉 ≤ 0, ∀x ∈ K , y ∈ V I (K , T ). (2.3)

Then VI(K , T ) is closed and convex.

Proof We first show that VI(K , T ) is closed. Let {xn} be a sequence of VI(K , T ) such that
xn → x̂ ∈ K . From the definition of φ, the property of V, lemma 2.4 and conditions
(2.2) (2.3), we have

φ(xn, πK (J x̂ − βT x̂)) = V (JπK (J x̂ − βT x̂), xn)

≤ V (J x̂ − βT x̂, xn)

= ‖J x̂ − βT x̂‖2 − 2〈J x̂ − βT x̂, xn〉 + ‖xn‖2

≤ ‖J x̂‖2 − 2β〈T x̂, J ∗(J x̂ − βT x̂)〉 − 2〈J x̂, xn〉
+ 2β〈T x̂, xn〉 + ‖xn‖2

≤ ‖J x̂‖2 − 2〈J x̂, xn〉 + ‖xn‖2

= φ(xn, x̂),

for each n ∈ N . This implies,

0 ≤ φ(x̂, πK (J x̂ − βT x̂)) = lim
n→∞ φ(xn, πK (J x̂ − βT x̂))

≤ lim
n→∞ φ(xn, x̂) = φ(x̂, x̂) = 0.

Therefore, we obtain x̂ = πK (J x̂ − βT x̂). So,we have x̂ ∈ V I (K , T ). Next, we show that
VI(K , T ) is convex. For x, y ∈ VI(K , T ), and t ∈ (0, 1), put z = t x + (1 − t)y. It is
sufficient to show z = πK (J z − βT z). In fact, we have

0 ≤ φ(z, πK (J z − βT z)) = V (JπK (J z − βT z), z)
≤ V (J z − βT z, z) = ‖J z − βT z‖2 − 2〈J z − βT z, z〉 + ‖z‖2

≤ ‖J z‖2 − 2β〈T z, J ∗(J z − βT z)〉 − 2〈J z, z〉 + 2β〈T z, z〉 + ‖z‖2

= −2β〈T z, J ∗(J z − βT z)〉 + 2β〈T z, z〉.
(2.4)
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By (2.4), (2.2) and (2.3), we have

0 ≤ φ(z, πK (J z − βT z)) ≤ −2β〈T z, J ∗(J z − βT z)〉 + 2β〈T z, z〉
≤ 2β〈T z, z〉 = 2β〈T z, t x + (1 − t)y〉 = 2βt〈T z, x〉 + 2β(1 − t)〈T z, y〉 ≤ 0.

This implies z = πK (J z − βT z). Therefore, VI(K , T ) is closed and convex. ��
Lemma 2.6 If B is a reflexive, strictly convex and smooth Banach space, then πB = J ∗.
Proof For every φ ∈ B∗, by definition of V and (2.1), we have

0 ≤ V (φ, J ∗φ) = ‖φ‖2 − 2〈φ, J ∗φ〉 + ‖J ∗φ‖2 = 0.

By definition of the operator πB , we have J ∗φ ∈ πBφ. Since πB is single-valued, we have
πBφ = J ∗φ. ��

3 Main results

For any x0 ∈ K , we define the iteration process {xn} as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K chosen arbitrarily,

zn = πK (βn J xn + (1 − βn)J Sxn),

yn = J ∗(αn J xn + (1 − αn)JπK (J zn − βT zn)),

C0 = {u ∈ K : φ(u, y0) ≤ φ(u, x0)},
Cn = {u ∈ Cn−1

⋂
Qn−1 : φ(u, yn) ≤ φ(u, xn)},

Q0 = K ,

Qn = {u ∈ Qn−1
⋂

Cn−1 : 〈J x0 − J xn, xn − u〉 ≥ 0},
xn+1 = πCn

⋂
Qn J x0,

(3.1)

where {αn}, {βn} satisfy:

0 ≤ αn < 1, and lim sup
n→∞

αn < 1; 0 < βn < 1 and lim inf
n→∞ βn(1 − βn) > 0.

Theorem 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a
nonempty, closed convex subset of B. Assume that T is an operator of K into B∗ that satisfy
conditions (2.2) and (2.3) and S : K → K is a relatively weak nonexpansive mapping with
V I (K , T )

⋂
F(S) �= ∅. If T : K → B∗ is continuous, then the sequence {xn} defined by

(3.1) converges strongly to πV I (K ,T )
⋂

F(S) J x0.

Proof We first show that Cn and Qn are closed and convex for each n ∈ N
⋃{0}. By the

definition of Cn and Qn , it is obvious that Cn is closed and Qn is closed and convex for each
n ∈ N

⋃{0}. We show that Cn is convex. Since φ(u, yn) ≤ φ(u, xn) is equivalent to

2〈J xn − J yn, u〉 + ‖yn‖2 − ‖xn‖2 ≤ 0,

it follows that Cn is convex. Next, we show that VI(K , T )
⋂

F(S) ⊂ Cn
⋂

Qn for all
n ∈ N

⋃{0}. Let p ∈ VI(K , T )
⋂

F(S), then, from the definitions of φ and V , property (iii)
of V , lemma 2.4, conditions (2.2) and (2.3), we have

φ(p, πK (J zn − βT zn)) = V (JπK (J zn − βT zn), p) ≤ V (J zn − βT zn, p)

= ‖J zn − βT zn‖2 − 2〈J zn − βT zn, p〉 + ‖p‖2 (3.2)

≤ ‖J zn‖2 − 2β〈T zn, J ∗(J zn − βT zn)〉
− 2〈J zn − βT zn, p〉 + ‖p‖2

≤ ‖J zn‖2 − 2〈J zn, p〉 + ‖p‖2 = φ(p, zn),
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for each n ∈ N
⋃{0}. Therefore, by properties (viii) and (iii) of the operator V, (3.2), the

definition of S, we obtain

φ(p, y0) = V (J y0, p)

≤ α0V (J x0, p) + (1 − α0)V (JπK (J z0 − βT z0), p)

= α0φ(p, x0) + (1 − α0)φ(p, πK (J z0 − βT z0))

≤ α0φ(p, x0) + (1 − α0)φ(p, z0)

= α0φ(p, x0) + (1 − α0)V (J z0, p)

≤ α0φ(p, x0) + (1 − α0)V (β0 J x0 + (1 − β0)J Sx0, p)

≤ α0φ(p, x0) + (1 − α0)(β0V (J x0, p) + (1 − β0)V (J Sx0, p))

= α0φ(p, x0) + (1 − α0)(β0φ(p, x0) + (1 − β0)φ(p, Sx0))

≤ α0φ(p, x0) + (1 − α0)(β0φ(p, x0) + (1 − β0)φ(p, x0))

= φ(p, x0),

(3.3)

which gives that p ∈ C0. On the other hand, it is clear that p ∈ Q0 = K . Thus V I (K , T )
⋂

F(S) ⊂ C0
⋂

Q0 and hence x1 = πC0
⋂

Q0 J x0 is well defined. Suppose that V I (K , T )
⋂

F(S) ⊂ Cn−1
⋂

Qn−1 and xn is well defined. Then the method in (3.3) implies that
φ(p, yn) ≤ φ(p, xn) and that p ∈ Cn . Moreover, it follows from property(v) of the operator
πK and xn = πCn−1

⋂
Qn−1 J x0 that

〈J x0 − J xn, xn − p〉 ≥ 0,

which implies that p ∈ Qn . Hence VI(K , T )
⋂

F(S) ⊂ Cn
⋂

Qn and xn+1 = πCn
⋂

Qn J x0

is well-defined. Then by induction, VI(K , T )
⋂

F(S) ⊂ Cn
⋂

Qn for each n ∈ N
⋃{0}.

Hence, the sequence {xn} generated by (3.1) is well defined.
It follows from the definition of Qn that xn = πQn J x0. Using xn = πQn J x0 and

V I (K , T )
⋂

F(S) ⊂ Qn, we have V (J x0, xn)≤V (J x0, p) for each p ∈ V I (K , T )
⋂

F(S).

Therefore,{V (J x0, xn)} is bounded. Moreover, from the definition of V , we have that {xn}
is bounded. Since xn+1 = πCn

⋂
Qn J x0 ∈ Qn and xn = πQn J x0, we have V (J x0, xn) ≤

V (J x0, xn+1) for each n ∈ N
⋃{0}. Therefore, {V (J x0, xn)} is nondecreasing. So there

exists the limit of V (J x0, xn). By the construction of Qn , we have that Qm ⊂ Qn and
xm = πQm J x0 ∈ Qn for any positive integer m ≥ n. From property (vii) of the operator πK ,
we have

V (J xn, xm) ≤ V (J x0, xm) − V (J x0, xn)

for each n ∈ N
⋃{0} and any positive integer m ≥ n. This implies that

V (J xn, xm) → 0, as n, m → ∞.

By the definition of φ, we have

φ(xm, xn) → 0, as n, m → ∞. (3.4)

Using lemma 2.2, we obtain

‖xm − xn‖ → 0, as m, n → ∞,

and hence {xn} is Cauchy. Therefore, there exists a point q ∈ K such that xn → q, as n → ∞.

Since xn+1 = πCn
⋂

Qn J x0 ∈ Cn, from the definition of Cn, we also have

φ(xn+1, yn) ≤ φ(xn+1, xn)
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for each n ∈ N
⋃{0}. Tending n → ∞, we have lim

n→∞ φ(xn+1, yn) = 0. Using lemma 2.2,

we obtain

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = 0. (3.5)

From ‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖, we have

lim
n→∞ ‖xn − yn‖ = 0. (3.6)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖J xn − J yn‖ = 0. (3.7)

Since ‖J yn − J xn‖ = (1 − αn)‖JπK (J zn − βT zn) − J xn‖ and lim sup
n→∞

αn < 1, we have

‖JπK (J zn − βT zn) − J xn‖ → 0, as n → ∞.

Since J ∗ is also uniformly norm-to-norm continuous on bounded sets, we have

‖J ∗ JπK (J zn − βT zn) − J ∗ J xn‖ = ‖πK (J zn − βT zn) − xn‖ → 0, as n → ∞.

(3.8)

Since {xn} is bounded, then {J xn}, {J Sxn} are also bounded. Moreover, since B is a uniformly
smooth Banach space, we know that B∗ is a uniformly convex Banach space. Therefore,
lemma 2.3 is applicable. From property(iii) of the operator V , lemma 2.3, and the definition
of S, we have

φ(p, zn) = V (J zn, p) ≤ V (βn J xn + (1 − βn)J Sxn, p)

= ‖βn J xn + (1 − βn)J Sxn‖2 − 2〈βn J xn + (1 − βn)J Sxn, p〉 + ‖p‖2

≤ βn‖J xn‖2 + (1 − βn)‖J Sxn‖2 − βn(1 − βn)g(‖J xn − J Sxn‖)
− 2βn〈J xn, p〉 − 2(1 − βn)〈J Sxn, p〉 + ‖p‖2

= βnφ(p, xn) + (1 − βn)φ(p, Sxn) − βn(1 − βn)g(‖J xn − J Sxn‖)
≤ βnφ(p, xn) + (1 − βn)φ(p, xn) − βn(1 − βn)g(‖J xn − J Sxn‖)
= φ(p, xn) − βn(1 − βn)g(‖J xn − J Sxn‖).

(3.9)

From property (viii) of the operator V and (3.2), (3.9), we obtain

φ(p, yn) = V (J yn, p)

≤ αn V (J xn, p) + (1 − αn)V (JπK (J zn − βT zn), p)

= αnφ(p, xn) + (1 − αn)φ(p, πK (J zn − βT zn))

≤ αnφ(p, xn) + (1 − αn)φ(p, zn)

≤ αnφ(p, xn) + (1 − αn)(φ(p, xn) − βn(1 − βn)g(‖J xn − J Sxn‖))
= φ(p, xn) − (1 − αn)βn(1 − βn)g(‖J xn − J Sxn‖).

Therefore,

(1−αn)βn(1−βn)g(‖J xn−J Sxn‖) ≤ φ(p, xn) − φ(p, yn)

= 2〈J yn − J xn, p〉 + ‖xn‖2 − ‖yn‖2

= 2〈J yn − J xn, p〉 + (‖xn‖ − ‖yn‖)(‖xn‖ + ‖yn‖).
By (3.6), (3.7) and lim sup

n→∞
αn < 1, lim inf

n→∞ βn(1 −βn)> 0,we have lim
n→∞ g(‖J xn−J Sxn‖)=0.

By the property of the function g, we obtain lim
n→∞ ‖J xn − J Sxn‖ = 0. Since J ∗ is also uni-

formly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖xn − Sxn‖ = lim

n→∞ ‖J ∗ J xn − J ∗ J Sxn‖ = 0. (3.10)
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Since xn → q, we have q ∈ F̃(S) = F(S). Moreover, Sxn → q and J Sxn → Jq. Noting
properties (iii), (viii) and (ii) of the operator V , we derive that

φ(xn, zn) = V (J zn, xn) ≤ V (βn J xn + (1 − βn)J Sxn, xn),

≤ βn V (J xn, xn) + (1 − βn)V (J Sxn, xn),

= (1 − βn)V (J Sxn, xn).

By the continuity of the operator V, we have lim
n→∞ V (J Sxn, xn) = V (Jq, q) = 0 and hence

lim
n→∞(1 − βn)V (J Sxn, xn) = 0. Therefore, lim

n→∞ φ(xn, zn) = 0. From lemma 2.2, we have

‖xn − zn‖ → 0, as n → ∞. (3.11)

Using inequalities (3.8) and (3.11), we obtain

‖πK (J zn − βT zn) − zn‖ ≤ ‖πK (J zn − βT zn) − xn‖ + ‖xn − zn‖ → 0. (3.12)

Since xn → q, we have zn → q. By the continuity of the operators J, T and πK , we have

‖πK (J zn − βT zn) − πK (Jq − βT q)‖ → 0. (3.13)

Noting

‖πK (J zn − βT zn) − q‖ ≤ ‖πK (J zn − βT zn) − zn‖ + ‖zn − q‖ → 0, as n → ∞.

Hence, it follows from the uniqueness of the limit that q = πK (Jq −βT q). By Theorem 2.1,
we have q ∈ V I (K , T ). Thus, q ∈ V I (K , T )

⋂
F(S).

Finally, we show that q = πV I (K ,T )
⋂

F(S) J x0. Since q ∈ V I (K , T )
⋂

F(S), then from
property(vii) of the operator πK , we have

V (JπV I (K ,T )
⋂

F(S) J x0, q) + V (J x0, πV I (K ,T )
⋂

F(S) J x0) ≤ V (J x0, q). (3.14)

On the other hand, since xn+1 = πCn
⋂

Qn J x0, and VI(K , T )
⋂

F(S) ⊂ Cn
⋂

Qn for each
n ∈ N

⋃{0}, then it follows from property(vii) of the operator πK that

V (J xn+1, πV I (K ,T )
⋂

F(S) J x0) + V (J x0, xn+1) ≤ V (J x0, πV I (K ,T )
⋂

F(S) J x0).

(3.15)

Moreover, by the continuity of the operator V, we get that

lim
n→∞ V (J x0, xn+1) = V (J x0, q). (3.16)

Combining (3.14), (3.15) with (3.16), we obtain that V (J x0, q)=V (J x0, πV I (K ,T )
⋂

F(S)

J x0).Therefore, it follows from the uniqueness ofπV I (K ,T )
⋂

F(S) J x0 that q=πV I (K ,T )
⋂

F(S)

J x0. This completes the proof. ��

If S = I, then (3.1) reduces to the modified Mann iteration for variational inequality (1.1)
and so we obtain the following result:

Corollary 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be a
nonempty, closed convex subset of B. Assume that T is an operator of K into B∗ that satisfies
conditions (2.2) and (2.3) such that V I (K , T ) �= ∅. If T : K → B∗ is continuous, and the

123



328 J Glob Optim (2010) 46:319–329

sequence {xn} is defined by the following modified Mann iteration
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K chosen arbitrarily,
yn = J ∗(αn J xn + (1 − αn)JπK (J xn − βT xn)),

C0 = {u ∈ K : φ(u, y0) ≤ φ(u, x0)},
Cn = {u ∈ Cn−1

⋂
Qn−1 : φ(u, yn) ≤ φ(u, xn)},

Q0 = K ,

Qn = {u ∈ Qn−1
⋂

Cn−1 : 〈J x0 − J xn, xn − u〉 ≥ 0},
xn+1 = πCn

⋂
Qn J x0,

(3.17)

where {αn} satisfies:

0 ≤ αn < 1, and lim sup
n→∞

αn < 1.

Then the sequence {xn} converges strongly toπV I (K ,T ) J x0,whereπV I (K ,T ) is the generalized
projection from B∗ onto V I (K , T ).

Proof Taking S = I in Theorem 3.1, by xn ∈ K and property(iv) of the operator πK , we
have zn = πK J xn = xn . Thus, we can obtain the desired conclusion. ��
Remark 3.1 Corollary 3.1 improves theorem 3.3 of [9] and Theorem 3.1 of [8] in the follow-
ing senses:

(1) the condition in theorem 3.3 of [9] that J − βT : K → B∗ is compact is removed, we
only require that T : K → B∗ is continuous;

(2) we obtain that the convergence point of {xn} is πV I (K ,T ) J x0, which is more concrete
than related conclusions of [8] and [9].

If K = B, we obtain the following result:

Corollary 3.2 Let B be a uniformly convex and uniformly smooth Banach space. Let T be
an operator of B into B∗ that satisfy the following conditions: there exists a positive number
β such that

〈T x, J ∗(J x − βT x)〉 ≥ 0, ∀x ∈ B

and

〈T x, y〉 ≤ 0, ∀x ∈ B, y ∈ T −10,

where T −10 = {u ∈ B : T u = 0}. Suppose that S : B → B is a relatively weak nonexpan-
sive mapping with T −10

⋂
F(S) �= ∅. If T : B → B∗ is continuous, then the sequence {xn}

defined by the following iteration process:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ B chosen arbitrarily,

zn = J ∗(βn J xn + (1 − βn)J Sxn)

yn = J ∗(αn J xn + (1 − αn)(J zn − βT zn)),

C0 = {u ∈ B : φ(u, y0) ≤ φ(u, x0)},
Cn = {u ∈ Cn−1

⋂
Qn−1 : φ(u, yn) ≤ φ(u, xn)},

Q0 = B,

Qn = {u ∈ Qn−1
⋂

Cn−1 : 〈J x0 − J xn, xn − u〉 ≥ 0},
xn+1 = πCn

⋂
Qn J x0,

where {αn}, {βn} satisfy:

0 ≤ αn < 1, and lim sup
n→∞

αn < 1; 0 < βn < 1 and lim inf
n→∞ βn(1 − βn) > 0,
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converges strongly to πT −10
⋂

F(S) J x0.

Proof Taking K = B in Theorem 3.1, by lemma 2.6 and Theorem 2.1, we have πB =
J ∗ and VI(B, T ) = T −10. Therefore, it is easy to obtain the desired result by Theorem 3.1.

��
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